1.	The value of	1001^{2}	999^{2}	is
		101^{2} –	99^{2}	

(A) 1

(B) 10

(C) 20

(D) 40

(E) 100

2. Let S be the set of three-digit numbers where all the digits are equal to 1 or 2. Find the sum of all numbers in S.

(A) 1332

(B) 333

(C) 999

(D) 666

(E) 1665

3. How many of the following numbers are greater than 10?

$$3\sqrt{11}$$
, $4\sqrt{7}$, $5\sqrt{5}$, $6\sqrt{3}$, $7\sqrt{2}$.

(A) 1

(B) 3

(C) 5

(D) 4

(E) 2

4. The 14 digits of a credit card are to be written in the boxes below. If the sum of any three consecutive digits is 20, then the value of x is

(A) 3

(B) 4

(C) 5

(D) 7

(E) 9

5. In the diagram below, $\angle PQR = 12^{\circ}$, and a sequence of isosceles triangles is drawn as shown.

What is the largest number of isosceles triangles that can be drawn?

(A) 8

(B) 4

(C) 5

(D) 7

(E) 6

6. The numbers a, b, c, d, and e are equal to the numbers 1, 2, 3, 4, and 5 in some order. The largest possible value of ab + bc + cd + de is

(A) 40

(B) 43

(C) 45

(D) 46

(E) 49

7. If $x^2 = 3x + 1$, then x^3 is equal to

(A) 10x + 3

(B) 4x + 1

(C) 4x + 3

(D) 13x + 3

(E) 10x + 1

8. Two numbers x and y satisfy three of the following equations but not the remaining equation. What is the value of x?

$$x + y = 63$$
, $x \quad y = 47$, $xy = 392$, $x/y = 8$.

(A) 7

(B) 8

(C) $\frac{196}{3}$

(D) 55

(E) 56

- 9. If a and b are real numbers such that 0 < a < b and $a^2 + b^2 = 6ab$, then $\frac{a+b}{a-b}$ is equal to
 - (A) $\sqrt{2}$
- (B) $2\sqrt{2}$ (C) $2\sqrt{2}$ (D) $-\sqrt{2}$

- 10. The distance between the points A and B is 2. The circle with center A and radius 2 is drawn, as well as the circle with center B and radius 2. A third circle is drawn that is tangent to both circles, and segment AB, as shown below. Find the area of this third circle.

- (A) $\frac{9\pi}{16}$ (B) $\frac{3}{4}$ (C) $\frac{5\pi}{8}$ (D) $\frac{3}{8}$ (E) $\frac{7\pi}{8}$
- 11. If $x = \sec + \tan \theta$ and $y = \sec \theta \tan \theta$, then which of the following is true for all values of θ for which x and y are defined?
 - (A) x + y = 2
- (B) xy = 1 (C) $x^2 + y^2 = 2$
- (D) $x^2 + y^2 = 1$ (E) x y = 2
- 12. The six tiles on the left can be re-arranged to completely cover the shape on the right, without overlap. The tiles may be rotated and/or reflected. Which square must the tile consisting of one unit square cover?

- (A) P
- (B) Q
- (C) R
- (D) S
- (E) T

13. When the expression

$$(x_1 + x_2 + x_3 + x_4 + \dots + x_9 + x_{10})(x_1 - x_2 + x_3 - x_4 + \dots + x_9 - x_{10})$$

is expanded and simplified, how many different terms appear?

- (A) 20
- (B) 25
- (C) 30
- (D) 35
- (E) 50
- 14. The least common multiple of $10! \cdot 18!$ and $12! \cdot 17!$ is
 - (A) $\frac{18! \quad 12!}{6!}$ (B) $18! \cdot 17!$ (C) $\frac{12! \cdot 18!}{3!}$
- (D) 12! 18!
- (E) $\frac{18! \cdot 17!}{6!}$

- 15. When the product $1 ext{ } 3 \times 5 \times 7$
- 99 is written as a number, its tens digit is

- (A) 2
- (B) 7
- (C) 5
- (D) 0
- (E) 3